D 51230	(Pages : 2)	Name
		Rog No

THIRD SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2023

(CBCSS)

Chemistry

CHE 3C 09—MOLECULAR SPECTROSCOPY

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. Classify the following molecules as spherical, symmetric or asymmetric tops and state which will give pure rotational spectra: CS_2 , BeH_2 , NH_3 , SO_2 .
- 2. The rotational constant of H³⁵C1 is 10.5909 cm⁻¹. Calculate the rotational constant of H³⁷Cl.
- 3. What is meant by normal modes of vibration? How many normal modes of vibration do the following molecule have : C_2H_2 , NH_3 .
- 4. What is coupling constant? What are the factors affecting J values?
- 5. Why water cannot be used as a solvent in IR spectroscopy?
- 6. What is metastable peak?
- 7. Explain the effect of solvents and extended conjugation on electronic transition.
- 8. Write notes on McLafferty rearrangement.
- 9. Write a short note on Karplus relationship.
- 10. What is nuclear overhauser effect?

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

2 D 51230

Section B

Answer any six questions.

Each question carries a weightage of 2.

- 11. What is nitrogen rule and how it is useful to have an idea about the mass of the given organic molecule?
- 12. Give an account of quantum theory in explaining Raman effect.
- 13. Illustrate dissociation and predissociation with diagrams.
- 14. With a brief explanation, draw the schematic high resolution ESR spectrum of methyl radical.
- 15. Write notes on; (i) Shielding mechanism; and (ii) spin-lattice relaxation.
- 16. Discuss the strategies to improve M+ intensity in mass spectra
- 17. Give an account of how Raman spectra of diatomic molecules give valuable information about their molecular structure and other properties.
- 18. Explain the isotope effect on the rotation spectrum.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any two questions.

Each question carries a weightage of 5.

- 19. (a) Outline the principle of Mossbauer spectroscopy.
 - (b) Explain the applications of Mossbauer theory in the study of Fe (II) and Fe (III) cyanides.
- 20. Explain in detail the applications of IR spectroscopy in elucidating the molecular structure.
- 21. Discuss the principle of NMR spectroscopy. Taking suitable examples explain the spin-spin coupling involved in the NMR spectra of AB type of molecules.
- 22. Explain the terms: (i) FAB spectra; (ii) Cotton Effect; (iii) Me Connell Relation; and (iv) Woodward-Fieser rule.

 $(2 \times 5 = 10 \text{ weightage})$